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Mobile impurity in one-dimensional correlated electron systems?
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Abstract. Critical properties of one-dimensional (1D) correlated electron systems with a mobile impurity
are investigated. By applying the finite-size scaling method to a Bethe-ansatz solvable model, we derive the
conformal dimensions related to the orthogonality catastrophe. We then apply the results to the Fermi-edge
singularity in quantum wires, and clarify how the critical exponent for X-ray absorption depends on the
mass of the core-hole created. A generalization to SU(ν) electron systems is outlined based on the g-on
description of 1D electron systems.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
72.15.Nj Collective modes (e.g., in one-dimensional conductors) – 72.10.Fk Scattering by point defects,
dislocations, surfaces, and other imperfections (including Kondo effect)

1 Introduction

Critical phenomena in one-dimensional (1D) correlated
electron systems have been providing one of the most at-
tractive subjects in condensed matter physics. Low-energy
properties for such correlated electron systems are gener-
ally described by Tomonaga-Luttinger (TL) liquids [1].
More recently, TL liquids with some impurities or defects
have attracted considerable attention. For example, in
connection with the Coulomb blockade in quantum wires
the effect of a localized impurity has been studied in detail
by means of perturbative renormalization group method
[2–10]. In this connection, various impurity models for 1D
correlated electron systems have been studied extensively
[11–20].

So far, the impurity effect on TL liquids has been
mainly studied for a static impurity. In this paper, we wish
to address the question how a mobile impurity affects the
critical properties of 1D correlated electron systems. This
problem is interesting because it is related not only to
the problem of a heavy particle in metal [21–23] but also
to the X-ray absorption experiments in quantum wires
[24], where a core hole created is regarded as a mobile
impurity. In particular, motivated by the above experi-
ments, extensive studies on the spectral properties have
been done theoretically. By using bosonization approach,
Ogawa et al. concluded that the Fermi-edge singularity
(FES) exponent may not depend on the mass of a core
hole [5]. On the other hand, Castella and Zotos claimed
that the FES exponent should take different values at
least between two non-trivial limits of core-hole mass
[25,26]. In the previous paper, as a first step to this type
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of impurity problem, we have investigated the critical
properties of 1D boson system with a mobile impurity
[27]. In this paper, by extending our analysis to correlated
electron systems, we derive some consequences about the
effect of a mobile impurity on electron systems. We also
generalize the analysis to SU(ν) electron systems.

The organization of this paper is as follows. In Sec-
tion 2, we introduce the model, and briefly summarize
its conformal properties based on the Bethe ansatz solu-
tion. In Section 3, we then obtain correlation exponents
as functions of the mass and the momentum of the mo-
bile impurity. The results obtained are then applied to the
FES problem in quantum wires. We show that the critical
exponent for the X-ray absorption depends on the mass
of the core hole, in contrast to the previous findings of
Ogawa et al. [5]. In Section 4, we outline a SU(ν) general-
ization of our analysis based on the g-on description of 1D
correlated electrons. Brief summary is given in Section 5.

2 Critical properties of 1D electron systems
with a mobile impurity

In this section, we study how a mobile impurity affects
low-energy properties of 1D electron systems, by exploit-
ing conformal field theory (CFT) analysis [28]. Let us start
with a model for 1D correlated electron systems with a
mobile impurity,
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1
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∂2
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′2
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δ(xi − x
′), (1)
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in periodic boundary conditions, where m and xi (m′ and
x′) represent the mass and the coordinate of host electrons
(a mobile impurity), respectively. This integrable model
was originally introduced by Li and Ma [29] for a 1D boson
system. We here solve this model for correlated electron
systems with internal SU(2) spin symmetry in order to
apply the results to the FES problem in quantum wires.
It is assumed that the mobile impurity does not possess
spin, so that it affects only the charge degrees of freedom.

Following Castro Neto and Fisher [23], we transform
the Hamiltonian by the unitary transformation which con-
verts the coordinates of electrons into those relative to a
mobile impurity,

H = −
1

2

N∑
i=1

∂2

∂y2
i

−
1

2µ

(
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δ(yi), (2)

where µ is the reduced mass defined by µ = m′/m.
Here we briefly summarize the techniques of Li and

Ma [29], which diagonalize the above Hamiltonian via
the Bethe ansatz method. We first note that because
of translational invariance for y0, the wave function
of N + 1 particles, ψ(y0, y1, ..., yN) can be written as
eiPy0φ(y1, y2, ..., yN), where P is a constant, i.e. the to-
tal momentum of the system. Therefore if we consider the
transformed Hamiltonian (2) to act on this wave function,
we can replace the impurity kinetic energy with

−
1

2µ

(
iP −

N∑
i=1

∂

∂yi

)2

. (3)

Our problem is now effectively reduced to the N -particle
problem for a given total momentum P . Following a stan-
dard Bethe-ansatz method, we now write down the N -
particle wave function as a superposition of plane waves
characterized by the charge rapidity kj (j = 1, 2, ..., N).
The scattering matrices were already obtained by Li and
Ma [29]. For example, the scattering matrix between two
host particles has an ordinary form

Sij =
ki − kj − iu

ki − kj + iu
(4)

for the singlet sector, whereas the scattering matrix be-
tween host particle and impurity is obtained as [29],

Si0 =
ki − λ/µ− iv

ki − λ/µ+ iv
, (5)

where we have introduced the impurity rapidity λ defined
by λ = P −

∑
j kj . These scattering matrices [29] have

a desirable form for the Yang-Baxter relation [30] (see
also discussions for a related impurity system [20]). By
including the spin degrees of freedom for host electrons
following Yang’s method [30], we arrive at the algebraic

Bethe equations for the charge rapidity kj and the spin
rapidity Λα,

kjL = 2πIj − φi(kj) +
Ns∑
α=1

θ(kj − Λα), (6)

N∑
j=1

θ(Λα − kj) = 2πJα +

Ns∑
β=1

θ((Λα − Λβ)/2) (7)

with θ(k) = 2 tan−1(2k/u), where N and Ns represents
the number of total electrons and that of down spins,
and L is the length of the system. Quantum numbers
Ij and Jα satisfy the selection rules for electron systems,
Ij = (Ns + 1)/2 (mod 1), Jα = (N +Ns + 1)/2 (mod 1).
The effect of the impurity manifests itself via the phase
shift function φi(k) = 2 tan−1(2(k − λ/µ)/v). The total
energy can be written as E =

∑
j k

2
j/2 + λ2/2µ. Note

that the bare momentum (rapidity) of a mobile impurity
λ should be determined consistently with the set of {kj} to
preserve the total momentum conservation, P =

∑
kj +λ

(see discussions in Sect. 3 for the renormalized momentum
which may be observable in experiments). Most formulae
presented in this section are standard in the Bethe solv-
able models, so that we briefly summarize the main points
necessary for the following discussions.

We first write down the finite-size corrections of the
energy to examine conformal properties [31,32]. Accord-
ing to the Euler-Maclaurin expansion [33–35], we get the
finite-size corrections to the ground state energy which are
typical for c = 1 Gaussian CFT,

E ' Lε∞ +Es −
πvc

6L
−
πvs

6L
, (8)

where vc and vs are the velocities of elementary excita-
tions for charge and spin sectors, respectively. Note that
the impurity effect causes the non-universal correction of
order of unity,

Es =
λ2

2µ
+

∫ k0

−k0

1

2
k2ρ(i)

c (k)dk, (9)

where we have introduced the density function for the
charge rapidity ρc(k) and the spin rapidity ρs(Λ), and
divided them into host and impurity parts; e.g. for the

charge sector ρc(k) = ρ
(h)
c (k) + 1

Lρ
(i)
c (k). The impurity

contribution to the density functions is determined by

ρ(i)
c (k) =

1

2π
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+

∫ Λ0

−Λ0

dΛ′

2π
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s (Λ′), (10)
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−k0
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2π
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−
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dΛ′
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s (Λ′), (11)



Y. Tsukamoto et al.: Mobile impurity in one-dimensional correlated electron systems 481

where k0 and Λ0 denote the Fermi points of the charge
and spin rapidities. For simplicity, we have introduced the
functions,

ρ0(k) =
v

(v/2)2 + k2
, Kn(k) =

nu

(nu/2)2 + k2
·

Note that the above Es is nothing but the renormalized
kinetic energy of a mobile impurity, which is referred to
the surface energy in CFT. When we apply the present
result to the X-ray absorption problem, the quantity Es
corresponds to the energy for a core-hole created by pho-
ton (see next section).

Similarly, the finite-size corrections to the excitation
energy are obtained in a standard form [35],

∆E =
2πvc
L

(∆+
c +∆−c ) +

2πvs
L

(∆+
s +∆−s ), (12)

from which we can read the holomorphic and anti-
holomorphic conformal dimensions for spin (s) and charge
(c) sectors,

∆±c =
1

2

{
∆Nc − n

(c)
imp

2ξ
±ξ

(
∆Dc+

∆Ds

2
−d(c)

imp

)}2

, (13)

∆±s =
1

4

(
∆Ns −

∆Nc

2
±∆Ds

)2

, (14)

for zero magnetic field. Here ∆Nc (∆Ns) and ∆Dc

(∆Ds) label quantum numbers for charged and current
excitations for the charge sector (spin sector) [35]. The

quantities n
(c)
imp and d

(c)
imp are the impurity phase shifts

obtained as

n
(c)
imp =

∫ k0

−k0

ρ(i)
c (k)dk, (15)

d
(c)
imp = −

1

2

∫ ∞
k0

ρ(i)
c (k)dk +

1

2

∫ −k0

−∞
ρ(i)
c (k)dk, (16)

where the Fermi point of spin rapidity Λ0 is set to be
infinity for zero magnetic field. Note that ξ is the dressed
charge [34,35] determined by ξ = ξ(k0) with

ξ(k) = 1 +
1

2π

∫ k0

−k0

K̄(k − k′)ξ(k
′)dk′, (17)

K̄(k) =

∫ ∞
−∞

eikx

eu|x| + 1
dx. (18)

It is seen that the conformal dimension (13) for the charge
sector takes a form typical for U(1) Gaussian CFT in
which the parameter ξ features c = 1 critical line. On
the other hand, the conformal dimension (14) for the spin
sector is characteristic of SU(2) Kac-Moody theory for
which the corresponding dressed charge takes a special
value 1/

√
2 (SU(2) enhancement point on c = 1 critical

line). The calculational detail for these points can be found
in the literatures [35,37]. The effect of a mobile impurity
is incorporated only in the charge sector in (13) because

we are now concerned with the impurity without spin de-
grees of freedom. The ordinary TL liquid parameter Kρ

which controls the correlation exponents [1,36] is given by
Kρ = ξ2/2.

In the above expressions for conformal dimensions,
most distinct from those for a static impurity is that it

possesses the non-trivial phase shift d
(c)
imp which does not

appear in an ordinary static impurity, and is inherent in
a mobile impurity. It is to be noticed, however, that the

phase shift d
(c)
imp can be observed even in the static impu-

rity problem if the external magnetic flux is introduced in
the ring geometry [20]: the excitation spectrum for such
an impurity system with flux has the same structure as
obtained in (12). However, a remarkable point is that the

phase shift d
(c)
imp in the present model is dynamically gen-

erated by the motion of the impurity. Namely, although
in the original Hamiltonian (1) the impurity scattering v
itself cannot produce the asymmetric phase shift, it natu-
rally appears if the impurity motion is taken into account.
This phase shift generated dynamically by the motion of
the impurity should be distinguished from that caused by
a static external flux mentioned above [20], although both
models exhibit the similar excitation energy. In particular,

both of the phase shifts n
(c)
imp and d

(c)
imp in our system de-

pend on the microscopic parameters of the system such as
the impurity scattering v, the electron-electron interaction
u, the electron density n, etc. Furthermore, when we apply
our impurity model to the X-ray absorption problem, for
which the mobile impurity is assumed to be created sud-
denly, the above non-trivial phase shifts can indeed show
up in the physical quantities. As will be discussed in the
next section in detail, when the X-ray absorption creates
the impurity (core-hole) with a given momentum in our
system, this produces the asymmetric phase shift, which
gives rise to the anomalous exponent for the absorption
spectrum. In contrast, in the case of the ordinary impu-
rity model with an external flux, the asymmetric phase
shift appears in the excitation spectrum, but should not
show up in the conformal dimensions or the correlation
exponents, as pointed out by Affleck and Ludwig [7]. In
this way, in order to discuss the anomalous critical expo-
nents, it is quite important to notice that our asymmetric

phase shift d
(c)
imp is dynamically generated by the motion

of the impurity. It will be indeed shown momentarily that

the two phase shifts n
(c)
imp and d

(c)
imp in our case play a cru-

cial role to determine the long-time behavior of correlation
functions.

This completes our preparation for computing the cor-
relation exponents related to the FES problem. Before
concluding this section we wish to mention one thing
about a mobile impurity. Although the impurity in our
system is mobile, there may naturally arise a question
whether a mobile impurity is dynamically localized or not.
This problem was previously addressed by Prokof’ev [21],
and Castro Neto and Fisher [23]. According to their anal-
yses, for the system with repulsive δ-function interaction
among electrons, the impurity cannot be localized, which
is consistent with the present results.
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3 Application to Fermi-edge singularity
problem

We now wish to determine the critical exponents for cor-
relation functions related to the FES problem. To this
end, let us recall here that conformal dimensions (13)
have the same form as expected for the system in which
two different twisted boundary conditions are imposed
on the left- and right-going electrons with twist angles

δL = 1
2 (n

(c)
imp − 2d

(c)
imp) and δR = 1

2 (n
(c)
imp + 2d

(c)
imp) in unit

of π. It is known that these phase shifts can be effectively
eliminated [7], if we consider the static correlation func-
tions. The non-trivial exponents we are now interested in
should appear in the FES problem for which an impurity
is suddenly created at time t = 0. The long-time behavior
of correlation functions is then controlled by the screening
effects due to conduction electrons, resulting in non-trivial
FES exponents.

We first observe the long-time behavior of the lo-
cal one-electron Green function, G(t) ≤ ψ†σ(t)ψσ(0) &
t−αG with σ =↑, ↓. To obtain the corresponding critical
exponent αG, we should take quantum numbers which
increase the number of host electrons by one [37]. In
this condition, the most relevant set of quantum num-
bers turns out to be given by (∆Nc,∆Ns,∆Dc,∆Ds) =
(1, 1, 0,± 1/2). Moreover, one can see that the condition

d
(c)
imp < 0 always holds for λ/µ > 0. Therefore, by choosing

(∆Nc,∆Ns,∆Dc,∆Ds) = (1, 1, 0,−1/2) for down-spin
electron, the critical exponent is evaluated as,

αG =
(1− n

(c)
imp)

2

2ξ2
+ 2ξ2

(
1

4
+ d

(c)
imp

)2

+
1

2
· (19)

Note that the critical exponent for up-spin elec-
tron is determined by (∆Nc,∆Ns,∆Dc,∆Ds) =
(1, 0,± 1/2,∓ 1/2), which gives the same result as (19).
Also, the critical exponent for the overlap-integral
(orthogonality-catastrophe exponent) [38] is obtained by
setting all the quantum numbers zero,

αO =
(n

(c)
imp)

2

2ξ2
+ 2ξ2

(
d

(c)
imp

)2

. (20)

This correlation exponent may be relevant to the spec-
tral function for core-electron photoemission in quantum
wires, for which the number of conduction electrons is not
changed in photoemission process. We plot two correla-
tion exponents as a function of λ/µ in Figure 1, and the

phase shifts n
(c)
imp and d

(c)
imp in Figure 2. We find that

the correlation exponents show a non-monotonic behavior
when effective impurity position λ/µ is close to the Fermi
level, because the impurity phase shifts change their values
rather sharply around the Fermi level as seen in Figure 2.
Here, some comments are in order for the impurity rapid-
ity λ. As mentioned in the introduction, the momentum
λ is the rapidity for the impurity, which should be de-
termined consistently with the condition P = λ +

∑
j kj .

Therefore, when the impurity is created suddenly, it also
induces the change in

∑
j kj for conduction electrons via

Fig. 1. Critical exponents αG and αO as a function of λ/µ:
the solid line (dashed line) represents αG (αO). The parameters
for interactions u and v are chosen as v/u = 0.1. The cut-off
parameter for rapidities is set to be k0 = 1.0.

Fig. 2. Phase shifts (a) n
(c)
imp and (b) d

(c)
imp as a function of

λ/µ. The parameters used are the same as those in Figure 1.

the interaction, which is evaluated as 2kFd
(c)
imp. Then the

total momentum which may be observable in experiments

is given by P = λ − 2kFd
(c)
imp; P is also regarded as the

renormalized momentum of the impurity if the impurity
is created when host electrons are in the ground state. To
make the relation between λ and P explicit, we have plot-
ted the total momentum P as a function of λ in Figure 3.

Here, it may be also instructive to give some discus-
sions for the orthogonality catastrophe (OC) exponent
αO introduced above. Rosch and Kopp [22], and Castella
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Fig. 3. Plots of the total momentum P as a function of the
impurity rapidity λ for several choices of the impurity mass µ:
the solid, the dashed and the dash-dotted lines correspond to
the µ = 0.5, 1 and 1.5 cases. The parameters used are the same
as those in Figure 1.

[26] already studied the propagator for a mobile impurity
in the noninteracting fermionic environment, from which
they obtained the corresponding OC exponent. For exam-

ple, Rosch and Kopp obtained (2/3)(n
(c)
imp)

2 in the heavy
mass limit. In contrast to their treatment, the impurity
state in the present case is assumed to be created at an
excited state with the total momentum P and the renor-
malized energy Es(P ) in equation (9), which is an eigen-
state of the system. Therefore our OC exponent obtained
from CFT analysis of this excitation spectrum is different
from theirs, and may be related to the overlap integral
between the ground state (without impurity) and such an
excited eigenstate (with impurity). In fact, when we take

the limit of the heavy mass, αO leads to (n
(c)
imp)

2 for the
noninteracting case, which is different from the OC expo-

nent of Rosch and Kopp, (2/3)(n
(c)
imp)

2

Furthermore, since we are considering an excited eigen-
state with the total momentum P , the propagator for the
renormalized impurity shows a power-law behavior with
the exponent αO even for finite P , although this is not
the case for the impurity propagator discussed by Rosch
and Kopp [22]. It is still open to relate these two exponents
explicitly, which should be resolved in the future study.

We are now ready to apply our analysis to the FES
problem in X-ray absorption in quantum wires. As men-
tioned before, recent optical experiments for quantum
wires pointed out the importance of mobile core hole cre-
ated by photon [24]. In fact, this problem has been the-
oretically studied by several authors [5,25,26]. In order
to discuss the FES problem in quantum wires, we first
regard a mobile impurity as a mobile core hole which is
created by X-ray absorption. Therefore, the renormalized

momentum of the mobile impurity, P = λ − 2kFd
(c)
imp, is

now regarded as that of the mobile core hole, which should
be set to be kF . The critical exponent βG = αG − 1 for
the FES (with frequency dependence ∼ ωβG) is thus given
directly by that for the one-particle Green function shown
in Figure 2. It is seen that the exponent βG has a negative

value irrespective of the momentum, which means that we
have the divergence FES in the range of λ/µ shown in Fig-
ure 1. As a natural consequence, the critical exponent for
the FES should depend on the mass of the core hole cre-
ated in quantum wires. Note that such dependence shows

up via the non-trivial phase shifts n
(c)
imp and d

(c)
imp.

We now compare our result with that obtained by
Ogawa et al. [5]. By exploiting bosonization method with
some other approximations, they claimed that the FES
exponent may not depend on the mass of the core hole
created. Apparently, our result disagrees with theirs. This
discrepancy was also pointed out by Castella et al. by us-
ing the Hubbard model with only one down-spin electron
[25,26]. Here we give a possible account for this discrep-
ancy. We first note that our formulae for conformal di-

mensions (13) include two phase shifts, n
(c)
imp as well as

d
(c)
imp. The former effect has been already taken into ac-

count previously [5], but the latter is inherent in our mo-

bile impurity. The appearance of d
(c)
imp implies that there

should effectively exist an asymmetric forward scattering
like

Himp = V (λ)δ(x)[ρL(x)− ρR(x)], (21)

for a given λ, where ρL(x) (ρR(x)) is the density of
left-going (right-going) electrons. Here we have used the
relative-coordinate representation introduced in (2). Note
thatHimp is the impurity potential coupled to the electron
current (not the total density). This type of asymmetric
scattering is characteristic of the mobile impurity, whose
origin is not clearly seen in the original Hamiltonian (1),
but is naturally understood in the transformed Hamilto-
nian (2). Namely, one can see the gauge potential explic-
itly included in the kinetic energy of the impurity, which
may give rise to the coupling of the impurity to electron
currents. In the approach of Ogawa et al. [5], this asym-
metric scattering term has not been included, which may
be a reason why they could not find the mass dependence.
So, in order to treat a mobile impurity, it is important to
take into account the asymmetric forward scattering due
to impurity.

4 Multicomponent systems with a mobile
impurity

We now wish to extend our analysis to general multi-
component cases, including non-integrable models. To this
end, it is useful to exploit the notion of g-ons, which can
describe the universal low-energy properties of 1D corre-
lated electron systems phenomenologically in a simplified
manner. Let us start with a brief introduction of g-ons
defined in exclusion statistics [39,40]. Exclusion statistics
is based on counting the change of the dimension of the
one-particle Hilbert space when a particle is added to the
system, which is explicitly formulated as [39],

∂Dα(kα)

∂Nβ(k′β)
= −gαβ(kα − k

′
β), (22)
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where Dα(kα) and Nα(kα) are the numbers of unoccupied
(hole) and occupied (particle) states specified by the inter-
nal quantum numbers α = (1, 2, ..., ν) and corresponding
momentum kα. The matrix gαβ, which is called statistical
interaction, describes correlation effects among particles.
Simple cases gαβ(kα − k′β) = gδαβδkαk′β with g = 1 and

g = 0 correspond to free fermions and free bosons, re-
spectively, and for general fractional value g, we call g-ons
which obey ideal exclusion statistics [39,40]. An impor-
tant point is that g-ons are idealized particles which can
describe essential properties of 1D correlated electron sys-
tems in the low-energy regime: the statistical parameter
g serves as the TL liquid parameter. So far, the impurity
effect on g-ons has not been discussed. We wish to study
g-ons with a mobile impurity in order to generalize our
discussions in the previous section.

Let us begin with a simple example. Consider 1D non-
interacting Dirac fermions with a mobile impurity. The
spectrum of the system may be given by

kjL = φi(kj) + 2πIj , (23)

where φi(kj) is the phase shift due to a mobile impurity
(see Eq. (7)). Now let us turn on the statistical interac-
tion p. It is known that the statistical interaction between
particles can be introduced by turning on the step-wise
two-body phase shift [39,40] pπsgn(kj − kl), so that

kjL = φi(kj) + 2πIj + pπ
∑
l

sgn(kj − kl). (24)

In this case the total statistical interaction reads g = 1 +
p, which is related to the TL liquid parameter as Kρ =
1/(2g − 1). Notice that if p = 0 the system reduces to
free fermions with statistical interaction g = 1. Thus, the
above Bethe-type equations can describe one-component
TL liquids with a mobile impurity in terms of g-ons.

Following Sutherland’s method [41], we now generalize
the above formulation to 1D multicomponent electron sys-
tems with SU(ν) spin symmetry by introducing ν-kind of

rapidities k
(α)
j . We thus arrive at the Bethe-type equations

for SU(ν) systems with a mobile impurity,

k
(1)
j L = φi(k

(1)
j ) + 2πI

(1)
j +

M2∑
m=1

Φ(k(2)
m − k

(1)
j )

+p

M1∑
l=1

Φ(k
(1)
j − k

(1)
l ), (25)

Mα∑
l=1

Φ(k(α)
m − k

(α)
l ) + 2πI(α)

m =
∑
s=±1

Mα+s∑
j=1

Φ(k(α)
m − k

(α+s)
j ),

(26)

for 2 ≤ α ≤ ν, where Φ(k) = πsgn(k) and I
(α)
j is an

integer or a half integer which classifies the charge and
spin excitations. Note that the statistical interaction p is
introduced only for the charge sector to preserve SU(ν)

spin symmetry. In the above equations we have defined
the quantity Mα =

∑ν
β=αNβ where Nβ is the number of

electrons with spin β. The energy is assumed to have the

form E =
∑
j(k

(1)
j )2/2 + λ2/2µ.

Let us write down the excitation spectrum. Using the
above equations, low-energy excitations are classified as
∆E = 2πvxb/L, with the scaling dimension xb obtained
in the matrix formula,

xb =
1

4
mtTm + dtT−1d, (27)

for zero magnetic field, where the ν × ν matrix T is eval-
uated as,

T =


g −1

−1 2
. . .

. . .
. . . −1
−1 2

 (28)

with g = 1 + p. Here the ν-component vector m con-
sists of quantum numbers which classify the charge and
spin excitations, where we have assumed that m1 and d1

label charge excitations [42,43]. Note that these quan-
tum numbers include the effect of the phase shifts, e.g.

mα = ∆Mα + [1 + (1 − α)/ν]n
(c)
imp, where ∆Mα is an

integer whereas n
(c)
imp denotes the impurity phase shift.

Similar expression holds for dα: dα = ∆Dα + d
(c)
impδ1α.

The selection rule for the quantum numbers read [42,43]:
∆Dα = 1

2 (∆Mα−1 +∆Mα+1) mod 1, with ∆M0 = ∆M1

and ∆Mν+1 = 0. Note that the critical behavior of the
present multicomponent model is described by shifted
U(1) CFT for charge sector and level-1 SU(ν) Kac-Moody
theory for spin sector.

Now, we can read the critical exponents for the FES
problem. We recall here again that in order to obtain non-
trivial exponents, we should consider the situation where
an impurity is suddenly created at t = 0. By generalizing
the arguments in the previous section, we first consider
the long-time behavior of the electron Green function.
This is controlled by the quantum numbers which add
one electron to the system. Thus by setting ∆Mα = 1,
and ∆Dα±1 = ∓ 1/2, the critical exponent for the FES is
computed as,

αG =
1 + νp

2ν

(
1− n(c)

imp

)2

+
2

ν(1 + νp)

×

(
1

2
+ νd

(c)
imp

)2

+
ν − 1

ν
· (29)

The TL liquid parameter is now identified with Kρ =
1/(1 + νp), if it is normalized as Kρ = 1 for noninteract-
ing case, as usual [1,36]. Note that the value (ν − 1)/ν in
the above formula is nothing but the spin exponent deter-
mined from the level-1 SU(ν) Kac-Moody theory. Also, the
critical exponent for the orthogonality catastrophe reads,

αO =
1 + νp

2ν

(
n

(c)
imp

)2

+
2ν

(1 + νp)

(
d

(c)
imp

)2

, (30)
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Fig. 4. Critical exponent αG for SU(ν) case as a function of
λ/µ with the statistical interaction g = 2: the solid, the dash-
dotted and the dashed lines correspond to the ν=2, 5 and 10
cases. The phase shifts are taken from those shown in Figure 2.

for which the spin exponent does not show up because the
spin excitation is not relevant to this correlation function.
For the ν = 2 case (SU(2) electrons), we can see that the
above formulae exactly correspond to those obtained in
the previous section with the relation ξ2 = 2/(1 + 2p). We
show the results for the FES exponent αG for the SU(ν)
case in Figure 4. It is seen that the mass dependence of
the correlation exponents for the SU(ν) case exhibits a
behavior similar to the SU(2) case via the variation of
two kind of phase shifts. However, the value of the expo-
nent itself becomes large as ν is increased, and the FES
exponent βG = αG − 1 relevant to the frequency depen-
dence can take a positive value in a certain momentum
region, resulting in the convergence FES. We can thus say
that the large spin degeneracy has a tendency to suppress
the FES in general. We wish to note that the merit of
our analysis based on g-ons is that the formulae obtained
are phenomenologically extended to more general cases
including non-integrable models. For example, if the diag-
onal elements of the matrix (28) are continuously changed,
we can treat the case with spin anisotropy, for which the
exact solution may not be easily obtained.

5 Summary

In this paper, the critical properties for the 1D correlated
electron system which includes a mobile impurity have
been studied by means of the Bethe ansatz method and
conformal field theory. We have then applied the results
to the FES problem in quantum wires, and have shown
that the FES exponent indeed depends on the mass of the
core hole created by the X-ray absorption. The general-
ization to the SU(ν) electron systems have been discussed
by using the g-on description of 1D electron systems. Our
prediction for the FES exponent is based on CFT analysis
of the excitation spectrum. So, it is desirable to calculate
the correlation function directly to confirm our conclusion,
which is now under consideration.

To conclude the paper, we wish to mention that the
problem in a mobile impurity in 1D electron systems is

also related to that for the photoemission in the Mott
insulator, as firstly pointed out by Sorella and Parola
[44,45]. To describe various spectral properties for Mott
insulators as well as for quantum wires in a unified fashion
is an interesting future problem.

The authors would like to express their sincere thanks to A.
Furusaki, N. Nagaosa, T. Ogawa and N. Prokof’ev for valuable
discussions on a mobile impurity in TL liquids.
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